Opener

If f is a differentiable function, then f'(a) is given by which of the following?

- I. $\lim_{h \to 0} \frac{f(a+h) f(a)}{r}$
- $\lim_{x \to a} \frac{f(x) f(a)}{x a}$
- (A) I only (B) II only (C) I and II only (D) I and III only (E) I, II, and III

Show that the derivative of $\frac{1}{3x^2}$ is $-\frac{2}{3x^3}$

Oct 4-8:17 AM Jan 10-6:57 PM

Show that the derivative of $5x^2 - 10x$ is 10x - 10

Who thinks they know the shortcut for finding derivatives?

$$8x^2$$

$$4x^{2} - 3x$$

$$4x^2 - 3x$$
 8×-3

$$\frac{5}{x} = 5x^{-1} \qquad \frac{-5}{x^2}$$

Jan 10-7:01 PM Jan 10-7:08 PM

3-3 Rules for Differentiation

Learning Objectives:

I can use the Power Rule to find derivatives.

I can use the product and quotient rule to find derivatives.

I can find second and higher order derivatives.

Derivatives of a Constant Function

$$f(x) = c$$

$$f'(x) = 0$$

Sep 21-12:38 PM

Sep 21-12:38 PM

Derivatives of a Linear Function

$$f(x) = mx + b$$

$$= 2x + 3$$

$$f'(x) = m$$

Sep 21-12:38 PM

Power Rule

$$f(x) = x^n \qquad \qquad f(x) = 8 \times 5$$

$$f'(x) = n \cdot x^{n-1} \qquad f'(x) = 40x^{4}$$

Sep 21-12:38 PM

Ex1. Find the derivative of the following functions

1.)
$$y = x^8$$

2.)
$$y = 4x^5$$

3.) $g(x) = 4x^3 + 6x^2 - 5x + 8$

$$g'(x) = 12x^2 + 12x - 5$$

4.)
$$f(x) = \sqrt{x} = \frac{x}{x^{2}}$$
 5.) $f(x) = \frac{3}{x^{2}} = 3x^{-2}$ $f'(x) = \frac{3}{x^{2}} = \frac{3}{x^{3}}$

5.)
$$f(x) = \frac{3}{x^2} = 3x^{-a}$$

Sep 21-12:38 PM

Ex2. Does the function have any horizontal tangent lines? If so, where are they?

$$g(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 6x + 8$$

$$g'(x) = x^{a} + x - 6$$

$$g'(x) = \chi^{a} + \chi - 6$$

Slope
formula $\chi^{2} + \chi - 6 = 0$
 $(x+3)(x-2) = 0$

Sep 21-12:38 PM

The Product Rule

$$h(x) = f(x) \cdot g(x)$$

$$h'(x) = f' \cdot g + f \cdot g'$$

Ex3. Find the derivative of the following functions

1.)
$$f(x) = (2x+3)(x^2+5x-7)$$

$$f(x) = 2x + 3$$
 $g(x) = x^{2} + 5x - 7$
 $f'(x) = 2$ $g'(x) = 2x + 5$

$$(2x+3)(2x+5) + 2(x^2+5x-7)$$

$$4x^2 + 16x + 15 + 2x^2 + 10x - 14$$

$$= 6x^2 + 26x + 1$$

2.) $y = (3x+8)\left(\frac{2}{x} - \sqrt{x} - 5\right)$ f(x) = 3x + 8 f'(x) = 3 $y' = (3x+8)\left(-\frac{3}{x^{2}} - \frac{1}{a\sqrt{x}}\right) + 3\left(\frac{3}{x} - \sqrt{x} - 5\right)$ $y' = -\frac{3x}{x^{2}} - \frac{1}{a\sqrt{x}}$ $y' = -\frac{3x}{x^{2}} - \frac{1}{a\sqrt{x}} + \frac{3}{x^{2}} - \frac{3}{a\sqrt{x}} - 15$ $y' = -\frac{3x}{x^{2}} - \frac{1}{x^{2}} - \frac{3}{x^{2}} - \frac{1}{x^{2}} - \frac{4}{x^{2}} - \frac{4}{$

Oct 7-10:50 AM

Sep 21-12:38 PM

The Quotient Rule

$$h(x) = \frac{f(x)}{g(x)}$$
$$h'(x) = \frac{f' \cdot g - f \cdot g'}{g^2}$$

Sep 21-12:38 PM

Ex4. Find the derivative of the following functions

1.)
$$f(x) = \frac{3x^2 - 5}{2x + 1}$$
 $\frac{f' \cdot g - f \cdot g'}{g^2}$
 $f(x) = 3x^2 - 5$ $g(x) = 2x + 1$
 $f'(x) = 6x$ $g'(x) = 2$
 $f'(x) = 6x$ $f'(x) = 6x$

Sep 21-12:38 PM

2.)
$$f(x) = \frac{x^{2} - 1}{x^{2} + 1}$$

$$f'(x) = 2x$$

$$f'(x)$$

 $y = x^{6} - 3x^{5} - 2x^{4} + 2x^{3} + x^{2} - 8x + 1$ $y' = 6x^{5} - 15x^{4} - 8x^{3} + 6x^{2} + 2x - 8$ $y''' = 30x^{4} - 60x^{3} - 24x^{2} + 12x + 2$ $y'''' = (20x^{3} - 180x^{2} - 48x + 12)$ $y'''' = 360x^{2} - 360x - 48$ y''''' = 720x - 360 y'''''' = 720 y''''''' = 720

Second and Higher Order Derivatives

v """ =

3-3 AB Calc.notebook October 07, 2015

Notation for Higher Order		
	Derivatives	<u>Third</u>
First Derivative	Second Derivative	<u>Derivative</u>
$f'(x) = y' = \frac{dy}{dx}$	$f''(x) = y'' = \frac{d^2y}{dx^2}$	$f'''(x) = y''' = \frac{d^3y}{dx^3}$
The rate at which the function is changing	The rate at which the rate of change of the function is changing	The rate at which the rate of change of the rate of change of the function is changing

Homework

pg 124 #5, 6, 7, 9, 11, 15-21 odd, 23, 25, 27, 33, 35, 37-40,46,52

Sep 21-12:38 PM Sep 21-12:38 PM